Synchronization from Second Order Network Connectivity Statistics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization from Second Order Network Connectivity Statistics

We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis...

متن کامل

Blind equalization of nonlinear channels from second-order statistics

This paper addresses the blind equalization problem for single-input multiple-output nonlinear channels, based on the second-order statistics (SOS) of the received signal. We consider the class of “linear in the parameters” channels, which can be seen as multiple-input systems in which the additional inputs are nonlinear functions of the signal of interest. These models include (but are not lim...

متن کامل

Shannon entropy in generalized order statistics from Pareto-type distributions

In this paper, we derive the exact analytical expressions for the Shannon entropy of generalized orderstatistics from Pareto-type and related distributions.

متن کامل

Second-order statistics of natural images

Assuming adaptation of the visual cortex to its environment, we analyse the invariance found in natural images to explain the selective response of visual cortical neurons. We argue that the invariant structure of images can be formally expressed by dot-products. Utilizing the specific structure of the proposed model we show how non-linear functions can be learned efficiently from natural image...

متن کامل

Second-order Linearity of Wilcoxon Statistics *

The rank statistics Sn(t) = 1 n ∑n i=1 ciRi(t) (t ∈ R), with Ri(t) being the rank of ei−txi, i = 1, . . . , n and e1, . . . , en being the random sample from the basic distribution with the cdf F , are considered as a random process with t in the role of parameter. Under some assumptions on ci, xi and on the underlying distribution, it is proved that the process {Sn( t √n)− Sn(0)− ESn(t), |t|2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Computational Neuroscience

سال: 2011

ISSN: 1662-5188

DOI: 10.3389/fncom.2011.00028